skip to main content


Search for: All records

Creators/Authors contains: "Becker, Martin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 1, 2025
  2. Abstract Diet is a crucial trait of an animal’s lifestyle and ecology. The trophic level of an organism indicates its functional position within an ecosystem and holds significance for its ecology and evolution. Here, we demonstrate the use of zinc isotopes (δ 66 Zn) to geochemically assess the trophic level in diverse extant and extinct sharks, including the Neogene megatooth shark ( Otodus megalodon ) and the great white shark ( Carcharodon carcharias ). We reveal that dietary δ 66 Zn signatures are preserved in fossil shark tooth enameloid over deep geologic time and are robust recorders of each species’ trophic level. We observe significant δ 66 Zn differences among the Otodus and Carcharodon populations implying dietary shifts throughout the Neogene in both genera. Notably, Early Pliocene sympatric C. carcharias and O. megalodon appear to have occupied a similar mean trophic level, a finding that may hold clues to the extinction of the gigantic Neogene megatooth shark. 
    more » « less
  3. Nitrogen isotope ratios in fossil teeth place extinct megatooth sharks at the top of the marine food web. 
    more » « less